
Journal of Management & Entrepreneurship UGC Care Group I Journal
ISSN 2229-5348 Vol-10 Issue-02 Dec 2021

Accelerating Biomedical Image Processing Applications using

BioThreads, a Novel VLIW-Based Chip Multiprocessor

B KEERTHI
1
 , P AKHILA

2

1,2
Professor , DEPARTMENT OF EEE

KLR COLLEGE OF ENGINEERING & TECHNOLOGY

BCM ROAD,PALONCHA-507115, BHADRADRI KOTHAGUDEM DIST

Abstract

Here, we talk about how the BioThreads system-on-chip

multiprocessor may be used to speed up imaging pho to

plethysmography (IPPG) and other biomedical signal

processing applications. Bio Threads, a multiprocessor based

on the open-source VLIW hardware LE1, effectively manages

parallelism at the instruction, data, and thread levels. It also

provides a new technique for the dynamic generation and

allocation of software threads to uncommitted processor cores

by implementing important POSIX Threads primitives directly

in hardware, as custom instructions. An FPGA board and a

host system are utilized with a high-speed image-acquisition

system to speed up the computation of an oxygen saturation

map of live tissue in this work. The results show that as the

number of hardware threads increases, the core kernels of the

blood perfusion assessment run almost linearly faster. Both

standard-cell and FPGA technologies were used to create the

Bio Threads processor, with full real-time performance being

attained with 4 cores on the former and 10 dual-issue cores on

a mid-range Xilinx Virtex6 device. Scalability of the suggested

method to a state-of-the-art FPGA vendor supplied soft CPU

core was shown by an 8-core LE1 VLIW FPGA prototype of

the system achieving 240 times quicker ex elution time than

the scalar Micro blaze processor. Biomedical image

processing, FPGAs, IPPG, microprocessors, and multicore

processing are some of the terms that may be used as index

terms.

BIOMEDICAL INTRODUCTION

AND INSPIRATIONAL FACTORS

 The ability to make important decisions and carry

out medical interventions in real time based on hard

facts, derived in real time from physiological data,

is essential for in-vitro and in-vivo assessment [1,

2]. This is because real-time execution of signal

processing codes is the key to enabling safe,

accurate, and timely decision-making. Several

imaging techniques, such as laser Doppler [3, 4],

optical coherence tomography [5, 6], and imaging

photoplethysmography [5, 6], have been presented

in recent years for use in biomedical image

processing. However, a real-time biomedical image

processing system based on very large-scale

integration (VLSI) systems technology is necessary

for any of these methods to reach their full

potential. For instance, the frame size and frame

rate employed by an IPPG system are strongly

connected to the quality and availability of

physiological information. The degree to which

such a system can function in real time is crucial to

its usefulness from the standpoint of its end users,

and practical implementations of the system aspire

to be independent and portable to realize its full

potential. Here, cutting-edge computer architecture

ideas used in high-performance consumer and

telecoms systems-on-a-chip (SoC) [7] could

provide the necessary data streaming and execution

bandwidth for the real-time execution of algorithms

that would otherwise be executed offline (in batch

mode) using more conventional techniques and

platforms (such as sequential execution on a PC

host). The expected performance advantages are

shown by the fact that our research platform's

single-core design is six times faster than the

performance of a scalar embedded processor, as

shown in a quantitative comparison presented in

this paper (results and discussion). Standard-cell

(ASIC) [8] and field-programmable gate array

(FPGA) (9) based embedded systems often make

use of scalar embedded processor cores with a

defined instruction-set-architecture (ISA). These

processors are an excellent middle ground for

doing low-complexity signal processing jobs, user

interface processing, low-level/bandwidth protocol

processing, and embedded operating system (eOS)

functions. Unfortunately, most signal processing

application backbone techniques demand high-

throughput execution and high-bandwidth data

transport, two areas where they fall significantly

short. In [10], the capabilities of three such scalar

engines aimed towards field-programmable gate

arrays (FPGAs) are compared in an innovative

way.

THE POWER OF BIOTHREADS

The LE1 open-source processor serves as the

foundation for the Bio Threads CMP, which adds

execution primitives to enable fast image

processing and dynamic thread allocation and

mapping to uncommitted CPU cores. The Bio

Threads design outlines a multiprocessor with

shared and distributed memory. The Bio Threads

multiprocessor architecture is a hybrid between

explicit and implicit threading models because it

requires the user to name software threads in the

code but also provides hardware support for

Journal of Management & Entrepreneurship UGC Care Group I Journal
ISSN 2229-5348 Vol-10 Issue-02 Dec 2021

creating, managing, synchronizing, and terminating

threads. Key Thread primitives like

pthread_create/join/exit and

pthread_mutex_init/lock/try lock/unlock/destroy

are fully supported in hardware by the LE1's thread

management. The thread control unit (TCU) is a

hardware block that initiates and terminates the

execution of multiple LE1 cores and is responsible

for servicing specialized hardware requests.

Multiple contexts (cores) compete for access to the

TCU, a point of explicit serialization where

Thread’s command requests are serialized

internally and served in turn. Because the TCU

handles low-level Thread services, the LE1 doesn't

need an OS; a typical pthread_create instruction

takes fewer than 20 clocks to execute. This sets the

LE1 VLIW CMP apart from all other VLIW

multicore processors and is its defining

characteristic. A high-level diagram of the Bio

Threads engine is shown in Fig. 1. The scalar

platform is comprised of the service processor (the

Xilinx Micro blaze, 5-stage pipeline 32-bit CPU),

its subsystem based on the Core Connect [38] bus

architecture, and the LE1 chip multiprocessor

(CMP) which runs the signal processing kernels.

The internal structure of a single LE1 context is

shown in Fig. 2. Instruction Fetch Engine,

Execution Core, Pipeline Controller, and

Load/Store Unit Make Up the Central Processing

Unit. Both an instruction cache and a tightly

connected instruction RAM (IRAM) are viable

options for the IFE's instruction storage and

execution mechanism. These are accessed at the

beginning of each cycle, and they give back a long

instruction word (LIW) that has many Rescopes in

it.

Fig. 1. Bio Threads Engine showing LE1 cores, memory

subsystem and overall architecture.

Fig. 2. Open-source LE1 Core pipeline organization.

Dispatch

The IFE controller handles debugging into the I

Cache/IRAM and interfaces with external memory

for reloading the ICache. An optional branch

predictor unit is available for the IFE, with

implementations in both set-associative and fully-

associative (CAM-based) architectures based on

the 2-bit saturating counter technique (Smith

predictor).The LE1_CORE section contains the

primary data routes used by the CPU during

execution. The number of clusters is adjustable,

and each cluster has its own set of registers. There

are three types of processing units (cores) in a

cluster: integer (SCORE), custom instruction

(CCORE), and floating point (FPCORE). However,

a consistent exception resolution point is shared by

the integer and floating-point data paths to enable a

precise exception programming paradigm.

PIPE_CTRL is the main control mechanism. It is a

chain of pipelined state machines that coordinates

the execution data paths and keeps tabs on the

general instruction flow. During debug activities,

PIPE_CTRL handshaking the host and maintaining

CPU control registers and decoding logic. The

LE1_CORE primarily accesses system memory

through the LSU. It can access the shared data

memory (STRMEM) and perform memory

operations at a rate of up to ISSUE_WIDTH

(VLIW architectural width) per cycle. For up to 8

clients and 8 banks (8 8), the latter is a 2- or 3-stage

pipelined cross-bar design that grows relatively

well (in terms of speed and area), as illustrated in

Tables I and II. Microarchitecture improvements

are possible since the number of LSU customers

(LSU_CHANNELS) does not have to match the

number of such banks. Fig. 3 depicts this

STRMEM block configuration. Finally, as seen in

Fig. 3, numerous processing cores may be created

in a CMP configuration to enable the use of shared-

memory TLP. A dual-LE1, single-cluster Bio

Threads system talking to a shared RAM for

streaming data is shown in the diagram.

Thread's control unit

Journal of Management & Entrepreneurship UGC Care Group I Journal
ISSN 2229-5348 Vol-10 Issue-02 Dec 2021

The TCU handles hardware context management

and dynamic allocation. The allocation of software

threads to execution resources (HC, hyper contexts)

is managed by this series of hierarchical state

machines. All running hyper contexts and the host

may make Threads queries to it. It is a

synchronization point for all running hyper

contexts and keeps track of a set of hardware (state)

tables. The TCU lives in the DEBUG_IF (Fig. 1),

where it takes advantage of the pre-existing

hardware infrastructure to halt, restart, read, write,

and interact with the host in order to di erectly

manage the operation mode of every hyper context

(HC). The Context TCU, which controls the local

(per-context, in the PIPE_CTRL block) delivery of

Threads instructions to the centralized TCU, is a

crucial building component in thread management.

One of the active HCs in a given context decides

each clock which commands may be executed on

the context's TCU; once a command is approved,

control is transferred to the TCU in the DBG_IF.

When the Threads command is complete, the

Context TCU sends the return values back to the

requesting HC. Thread control structure for a single

shared-memory system is shown in Fig. 5. The

diagram shows a system with a range of contexts

(0–); Because of this simplification, each context

has access to the global STRMEM for host-

initiated DMA transfers and/or retrieving the

argument for void pthread_exit(void *valuator).

Table III details the commands that may be used.

TABLE I BIOTHREADS REAL-TIME

PERFORMANCE (DUAL-ISSUE LE1 CORES,

FPGA AND ASIC)

TABLE II BIOTHREADS REAL-TIME

PERFORMANCE (QUAD-ISSUE LE1 CORES,

FPGA AND ASIC

RESULTS AND DISCUSSION

Several experiments calculating blood volume

changes in real time using the Bio Threads platform

are shown here. There are two main categories for

these findings: A) Performance (real-time) results,

which are concerned with the actual time it takes to

compute the blood perfusion map, and B) SoC

platform outcomes. These specifications are for a

0.13, 1-poly, 8-metal (1P8M) standard-cell process

with a Xilinx Virtex6 LX240T FG1156 [41] FPGA.

It's worth noting that although the standard-cell

library we have access to in the lab is very dated,

the FPGA device is built on a nearly cutting-edge

silicon node (40 nm, TSMC). It is clear that the

performance gap between the standard-cell (300

MHz) and the FPGA objective (100 MHz) in

Tables I and II is not indicative of what may be

anticipated when aiming for a standard-cell process

at an advanced silicon node (40 nm and below). A.

Outcomes of Performance Processors on the target

platform have begun running the IPPG algorithms

once the 60 frames were transmitted there. When

processing was complete, the calculated frame was

sent back to the host for presentation. Table I

displays the actual execution time for the FPGA

platform's 2-wide LE1 system (a VLIW CMP with

dual-static-issue cores); ASIC results were

simulated. The tabular data is organized into

columns with the following labels:

• Setup:

 The big picture of LE1_CORES's Bio Threads

implementation

 EMORY_BANKS

"LE1 Cores" Finds out how many processing cores

the LE1 has.

The maximum number of concurrent load/store

operations permitted by the streaming memory

system is denoted by the number of memory banks,

as seen in Fig. 3. As will be seen shortly, this has a

considerable impact on the efficiency of the system

as a whole.

Journal of Management & Entrepreneurship UGC Care Group I Journal
ISSN 2229-5348 Vol-10 Issue-02 Dec 2021

Fig. 3. Speedup of Bio Threads performance for 2-wide LE1

subsystem (FPGA and ASIC).

The other three characteristics are either

determined through RTL simulations (ASIC

implementation) or tested on an FPGA platform

(100 MHz LE1 subsystem and service processor, as

illustrated in Fig. 1). The FFT findings were

achieved both with and without any special

instructions to speed things up.

Temporal Patterns:

 The time in milliseconds that the fundamental

signal-processing algorithm takes to run.

Execution time (in seconds):

The amount of time it really took to run the

algorithm (as measured by the service processor for

FPGA targets or computed through RTL simulation

for ASIC targets).

 Accelerate:

 How much faster Bio Threads configurations are

than the worst-case scenario of a single-core,

single-bank FPGA system without the FFT special

instructions. User-directed function in-lining,

compiler-driven loop unrolling, and custom

instructions were found to provide the highest

performance in a prior research of signal

processing kernel acceleration (FFT) on the LE1

processor [42]. The foregoing solutions resulted in

an 87% decrease in cycles, allowing for the real-

time execution of the IPPG algorithm stages.

CONCLUSIONS

 Methodology for employing a unique, adjustable

VLIW CMP to speed up biomedical signal

processing codes was addressed, and its viability

was assessed. When it comes to designing,

benchmarking, and optimizing silicon platforms for

use in consumer electronics and

telecommunications, the expertise of one team is

not enough to meet the needs of experts in the

biomedical signal processing domain. We made a

conscious decision to stick with tools already in the

hands of biomedical signal processing practitioners,

such as MATLAB and LABVIEW, and our Bio

Threads tools architecture was built to make C-

level programming easier in this area. Using

algorithms developed in the Me bedded MATLAB

subset, we showed how the configurable, extensible

Bio Threads engine can be used to compute in real-

time or near-real-time the blood perfusion of living

tissue. The autogenerated C code was then passed

on to the toolchain, which compiled it into an

application binary and performed coarse

architecture space evaluation to identify the best

Bio Threads configurations that achieve the

required level of performance. After the FPGA-

based CMP had been programmed, data sets were

fed from the host system (through the LABVIEW

front-end) and accelerated calculations were

performed.

REFERENCES

 [1] K. Rajang and L. M. Patnaik, “CBP and ART image

reconstruction algorithms on media and DSP processors,”

Microprocess. Microsyst., vol. 25, pp. 233–238, 2001.

 [2] O. Dandekar and R. Shekhar, “FPGA-Accelerated

deformable image registration for improved target-delineation

during CT-guided interventions,” IEEE Trans. Biomed.

Circuits Syst., vol. 1, no. 2, pp. 116–127, 2007.

 [3] K. Wardell and G. E. Nilsson, “Duplex laser Doppler

perfusion imaging,” Microvasc. Res., vol. 52, pp. 171–182,

1996.

[4] S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C.

Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack,

and K. D. Paulsen, “Interpreting haemoglobin and water

concentration, oxygen saturation, and scattering measured in

vivo by near infrared breast tomography,” Proc. Natl.

Academy Sciences USA, vol. 100, no. 21, pp. 12349–12354,

2003.

[5] S. Hu, J. Zheng, V. A. Chouliaras, and R. Summers,

“Feasibility of imaging photoplethysmography,” in Proc.

Conf. BioMedical Engineering and Informatics, Sanya,,

China, 2008, pp. 72–75.

 [6] P. Shi, V. Azorin Peris, A. Echiadis, J. Zheng, Y. Zhu, P.

Y. S. Cheang, and S. Hu, “Non-contact reflection

photoplethysmography towards effective human physiological

monitoring,” J Med. Biol. Eng., vol. 30, no. 30, pp. 161–167,

2010.

 [7] V. A. Chouliaras, J. L. Nunez, D. J. Mulvaney, F. Rovati,

and D. Alfonso, “A multi-standard video accelerator based on

a vector architecture,” IEEE Trans. Consum. Electron., vol.

51, no. 1, pp. 160–167, 2005.

 [8] ARM Cortex M3 Processor Specification, Sep. 2010

[Online]. Available:

http://www.arm.com/products/processors/cortex-

m/cortexm3.php [9] Microblaze Processor Reference Guide,

Doc. UG081 (v10.3), Oct. 2010 [Online]. Available:

http://www.xilinx.com

 [10] D. Mattson and M. Christensson, “Evaluation of

Synthesizable CPU Cores,” Master’s thesis, Dept. Computer

Engineering, Chalmers Univ. Technology, Goteborg, Sweden,

2004.

 [11] V. A. Chouliaras and J. L. Nunez, “Scalar coprocessors

for accelerating the G723.1 and G729A speech coders,” IEEE

Trans. Consum. Electron., vol. 49, no. 3, pp. 703–710, 2003.

http://www.xilinx.com/

Journal of Management & Entrepreneurship UGC Care Group I Journal
ISSN 2229-5348 Vol-10 Issue-02 Dec 2021

[12] N. Vassiliadis, G. Theodoridis, and S. Nikolaidis, “The

ARISE reconfigurable instruction set extensions framework,”

in Proc. Intl Conf. Emb. Computer Systems: Architectures,

Modelling and Simulation, Jul. 16–19, 2007, pp. 153–160.

[13] Xilinx XPS Mailbox” V1.0a Data Sheet, Oct. 2010

[Online]. Available: http://www.xilinx.com

[14] M. F. Dossis, T. Themelis, and L. Markopoulos, “A web

service to generate program coprocessors,” in Proc. 4th IEEE

Int. Workshop Semantic Media Adaptation and

Personalization, Dec. 2009, pp. 121–128.

[15] B. Gorjiara, M. Reshadi, and D. Gajski, “Designing a

custom architecture for DCT using NISC technology,” in

Proc. Design Automation, Asia and South Pacific Conf., 2006,

pp. 24–27.

 [16] V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau,

D. Cronquist, and M. Sivaraman, “PICO: Automatically

designing custom computers,” IEEE Comput., vol. 35, pp. 39–

47, 2002.

[17] R. Thomson, S. Moyers, D. Mulvaney, and V. A.

Chouliaras, “The UML-based design of a hardware

H.264/MPEG 4 AVC video decompression core,” in Proc. 5th

Int. UML-SoC Workshop (in Conjunction with 45th DAC),

Anaheim, CA, Jun. 2008, pp. 1–6.

[18] The AutoESL AutoPilot High-Level Synthesis Tool, May

2010 [Online]. Available:

http://www.autoesl.com/docs/bdti_autopilot_final.pdf

 [19] Y. Guo and J. R. Cavallaro, “A low complexity and low

power SoC design architecture for adaptive MAI suppression

in CDMA systems,” J. VLSI Signal Process. Syst. Signal

Image Video Technol., vol. 44, pp. 195–217, 2006.

 [20] S. Leibson and J. Kim, “Configurable processors: A new

era in chip design,” IEEE Comput., vol. 38, no. 7, pp. 51–59,

2005.

[21] N. T. Clark, H. Zhong, and S. A. Mahlke, “Automated

custom instruction generation for domain-specific processor

acceleration,” IEEE Trans. Comput., vol. 54, no. 10, pp. 1258–

1270, 2005.

http://www.xilinx.com/
http://www.autoesl.com/docs/bdti_autopilot_final.pdf

